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We show that localizednonevanescehtsolutions to Maxwell equations exist, which propagate without
distortion along normal waveguides with superluminal speed.
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I. INTRODUCTION: LOCALIZED SOLUTIONS TO THE Il. ABOUT EVANESCENT WAVES

WAVE EQUATIONS . . e
Q Notwithstanding all that work, still it is not yet well un-

derstood what solutionglet us now confine ourselves to

Already in 1915 Batemafi] showed that Maxwell equa- Maxwell equations and to electromagnetic wavkave to
tions admit(besides of the ordinary solutions, endowed inenter into the play in some experiments. Actually, most of the
vacuum with speed) of wavelet-type solutions, endowed in experimental results did not refer to the above-mentioned
vacuum with group velocitiesQv<c. But Bateman’s work localized, subluminal or superluminal, solutions, which in
went practically unnoticed. Only few authors, as Barut andvacuum are expected to propagate rigithy almost rigidly,
co-workers[2], followed such a research line; incidentally, when suitably truncated They referred, on the contrary, to
Barut and coworkers constructed even a wavelet-type soluneasurements of the group velocityeManescent wavésf.,
tion traveling with superluminal group velocif] v>c. e.g., Refs[11,17)). In fact, tunneling wave packettunnel-

In recent times, however, many authors have discusseitig photons toband/or evanescent waves had been predicted
the fact that alllhomogeneoyswave equations admit solu- to be superluminal bpoth quantum mechanid4.3] and spe-
tions with 0<v<: see, e.g., Donnelly and co-workdeg.  cial relativity [5].

Most of these authors confined themselves to investigate For instance, experimentsl2] with evanescent waves
(subluminal or superlumingllocalized nondispersive solu- traveling down an undersizedaveguiderevealed that eva-
tions in vacuum: namely, those solutions that were called’®Scent modes are endowed with superluminal group veloci-
“undistorted progressive waves” by Courant and Hilbert. ties [14]. . . . ) . .
Among localized solutions, the most interesting appeared to /A Problemarises in connection with experiments with two
be the so-called “X-shaped” waves, which —predicted to barriers” (i.e., segments afindersizedvaveguide 1 and 2

exist even by special relativity in its extended versjéii— separated by aormal-sizedwaveguide 3. In fact, it was

. found that for suitable frequency bands the wave coming out
had been mathematically constructed by Lu and Greenlea}fom barrier 1 goes on having a practically infinite speed,

[6] for acoustic waves, and by Ziolkowsit al.[7], and later and crosses the intermedidteorma) waveguide 3 in zero

Recami[8], for electroma%netlsm. » . , time [15]. Even if this can be theoretically understood by
Let us recall that such *"X-shaped” localized solutions are ,q\ing at the relevant transfer functiadsee the computer
superluminal(i.e., travel withv>c in the vacuumin the  gimyjations, based on Maxwell equations only, in Refs.
electromagnetic case; and are “supersoriic., travel with 14 16,17), it is natural to ask ourselves whether solutions to
a speed larger than the sound speed in the madinrthe  the Maxwell equations can actually exist, that travel with

acoustic case. The first authors to produce X-shaped wavegiperluminal speed in a normal waveguisihere one ordi-
experimentallywere Lu and Greenleaf9] for acoustics, narily meets propagating, subluminal modes only
Saari and co-workerglQ] for optics, and Mugnai and co- Namely, the dispersion relation in undersized guides is
workers and for microwaves. w?/c?—k?=—2, so that the standard formute=dw/dk
yields av>c group velocity[17,18. However, in normal
guides the dispersion relation becomaggc®—k?= +?, so
*Email address: recami@mi.infn.it that the same formula yields values<c only.
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In this paper we are going to show that actually localized Notice that, because of the transformations
solutions to Maxwell equations propagating with>c do

exist even in normal waveguides; but their group veloeity p=psiné, (3a)
cannot be givert by the approximate formula = dew/dk.

One of the motivations of the present paper is just contrib- st — ﬂz (3b)
uting to the clarification of this question, even if our local- c

ized superluminal solutions areot strictly related with the

particular case in Refl5]. the more the initiak/(p;t) is localized at=0, the more the
(three-dimensionalwave ¢s(p sin 8; t—(coséic)z) will be lo-
I1l. ABOUT SOME LOCALIZED SOLUTIONS TO calized aroundz=vt. It should be also emphaSized that be-
MAXWELL EQUATIONS cause of transformatiof8b) the velocityc goes into the ve-

locity v=c/cosé > c.

Let us start by considering localized solutions to Maxwell  |et us start with the choice
equations in vacuum. Aheoremby Lu et al. [19] showed
how to start from a solution holding in thaelane (x,y) for 8(p)
constructing a three-dimensional solution rigidly moving b(p)= I &(p)
along thez axis with superluminal velocity. Namely, let us
assume thai(p;t), with p=(x,y), is a solution of the two- a formal choice that later on will be relaxed. In cylindrical
dimensional homogeneous wave equation coordinates the wave equati¢b) becomes

0, 4

2 2 1 2 1 1 2 ’
(axwy—;at W(pit)=0. (D (;appap—gm)w(p;tho, (1)

By applying the transformation p—psing, t—t which exhibits the assumed axial symmetry. Looking for fac-
—(cosdlc)z, the angled being fixed, with 6< < =/2, one  torized solutions of the typgs(p;t)=R(p)T(t), one gets the
gets[19] that ¢(psin6; t—(cosblc)2)=(x,y,2) is a solu-  equations #T=—w?T and (p~'d,+ >+ w’/c’)R=0,
tion to the three-dimensional homogeneous wave equatiowhere the “separation constantw is a real parameter,
(VZ=d5+ a5+ 32): which yield the solutions

s6 ) T=Acoswt+ B sinwt (5)
=0.
) R=CJ,
The mentioned theorem holds for the vacuum case, and,

1 ) co
(Vz——z&f)w(psma;t——z 2
c c © )
cP)

in general, is not valid when introducing boundary condi- . )
tions. However, we discovered that, in the case of a twoWhere quantitie®\,B,C are real constants, ai} is the or-
dimensional solutiony valid on a circular domain of the dinary zero-order Bessel functi¢we disregarded the analo-
(x,y) plane such thay=0 for |p|=a, the above transfor- 90OUS SO|L!tI0nY0(wp/C) since it dl_\/_erges fop=0]. Finally,
mation leads us to é&hree-dimensionallocalized solution ~ PY imposing the boundary conditiop=0 atp=a, one ar-
rigidly traveling with a superluminal speed=c/cosé inside  fives at the base solutions
a cylindrical waveguidgeeven if the waveguide radiuswill
be no longera, butr =a/sin>a. We can, therefore, obtain w(p;t):Jo(hp>(An cosw,t+ B, sinw,t), [)\Eﬂa
an undistorted superluminal solution propagating down cy- a C
lindrical (metallio waveguidesfor each (two-dimensional (6)
solution valid on a circular domain. Let us recall that, as well . .
known, any solution to the scalar wave equation correspono@e roots of the Bessel function being
to solutions of the(vectoria) Maxwell equationg(cf., e.g.,

Ref. [8] and references theregin Ap=
For simplicity, let us put the origi® at the center of the
circular domainC, and choose a two-dimensional solution
W(p;t) that is axially symmetric, wittp=|p|, and with the
initial conditions ¥ (p;t=0)= ¢(p) and dyldt=E&(p) at t

=0.

The general solution for our two-dimensional problem
(with our boundary conditions will, therefore, be the
Fourier-type series

Won(pit)= 2 Jo(ﬁp)(An coswpt+ B, sinwpt). (7)
!Let us recall that the group velocity is well defined only when the n=1 a
pulse has a clear bump in space; but it can be calculated by the o . )
approximate, elementary relatior=dw/dk only when some extra The initial conditions (4) imply that ZAJo(\,p/a)
conditions are satisfiethamely, wherw as a function ok is also = &(p)/p, and=B,Jo(Anp/a) =0, so that allB, must van-
clearly bumpepl ish, while A,=2[a%J%(\,,)]%; and eventually one gets
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Wop(pit) = >,

n=1

2 @017

i) °

coswt,

wherew,=\,c/a.
Let us explicitly notice that we can go on from such a
formal solution to more physical ones, just by considering a

finite numbem of terms. In fact, each partial expansion will
satisfy (besides the boundary conditiothe second initial
condition d;=0 for t=0, while the first initial condition
gets the form¢(p)=f(p), wheref(p) will be a (well) lo-
calized function, but no longer &-type function. Actually,
the “localization” of ¢(p) increases with increasiny. We
shall come back to this point below.

IV. LOCALIZED WAVES PROPAGATING
SUPERLUMINALLY DOWN (NORMAL-SIZED )
WAVEGUIDES

We have now to apply transformatiof® to solution(8),

1P (m)

0.01 0.005 0.005 0.0

FIG. 1. Shape of the two-dimensional solution of the wave
equation valid on the circular domaip<a; a=0.1 m of the
(x,y) plane, fort=0, corresponding to the sum bdf=22 terms in
the expansion(8). It is no longer as function, but it is still very
well peaked. By choosing it as the initial condition, instead of the
first one of Eqs(4), one gets the three-dimensional wave depicted

in order to go on to three-dimensional waves propagatingn Figs. 2 and 3. The figure height is normalized so thiag(p

along a cylindrical (metallic waveguide with radiusr

=asin#. We obtain that Maxwell equations admit in such a

case the solutions

o0

2
Von(pzt)=S | —a——
3o(p.zil) nzl 222 (N,

o

where w,= \,c/a, which are sums over different propagat-
ing modes.

Ao
Jo 2P sing
A\ Ccosé
a

, 9

¢ t
z cosé

Such solutions propagate, down the waveguide, rigidlyP

with superluminal velocity v = c/cosé. Therefore (noneva-

nescentsolutions to Maxwell equations exist, that are waves

propagating undistorted alongormal waveguides with su-
perluminal speedeven if in normal-sized waveguides the

dispersion relation for each mode, i.e. for each term of the
Fourier-Bessel expansion, is the ordinary “subluminal” one, bl Lo

w22~ ki=+0?).

It is interesting that our superluminal solutions travel rig-
idly down the waveguide: this is at variance with what hap-

pens for truncatedsuperluminal solutions[7—10], which
travel almost rigidly only along their finite “depth of field”
and then abruptly decay.

Finally, let us consider a finite number of terms in £},

att=0. We made a few numerical evaluations: let us con-

sider the results foN=22 (however, similar results can be
already obtained, e.g., fd&f=10). The first initial condition
of Eq. (4), then, is no longer & function, but results to be
the (bumped two-dimensional wave represented in Fig. 1.
The three-dimensional wave, E(), corresponding to it,
i.e., with the same finite numb&= 22 of terms, is depicted

2Let us stress that each E(@) represents anultimodal (but lo-

=0;t=0)|?=1.

in Fig. 2. Itis still an exact solution of the wave equation, for
a metallic(normal-sized waveguide with radius =a/sin 6,
propagating rigidly with superluminal group velocity
=c/cos#, moreover, it is now ghysicalsolution. In Fig. 2
one can see its central portion, while in Fig. 3 it is shown the
space profile along, for t=const, of this propagating wave.

It is actually a component of a train of pulses; such pulses
being X shaped8], as it will be better shown elsewhere.

Let us recall that such superluminal motions do not imply
causality problem§5,18], since all Bessel beams, and super-
ositions of them, are known not to allow for superluminal
transmission of informatiof7]. Let us also recall that the
fact that our present solutions—when infinitely extended in

0.8 Lo O :

" A\ |

0ad :

e T OO e,

000 SR IN AOEREN = :
pPm  goos eSS 0

.01 -5

FIG. 2. Three-dimensionalvery well localized wave corre-
sponding to the initial, two-dimensional choice in Fig. 1. It propa-
gates rigidly(along the normal-sized circular waveguide with radius
r =a/sin #) with superluminal speed=c/cosé, as a component of
a pulse train. Such pulses are X shap8i as it will be better

calized propagation, as if the geometric dispersion compensateghown elsewhere. Quantity is defined asy=[z— (c/cosé)t]. The

for the multimodal dispersion.

central peak height is normalized so thdt;p(p=0;7=0)?=1.
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|3 p |2 Q(p)=0 for p=r, one gets that the acceptable angular fre-
quencies are constrained to be
_ C)\| 11
1 sing’ (1)

where\, is thelth zero of the equatiody(x)=0.

Therefore, assuming an arbitrary paramefierwe find
that for every mode supported by the waveguide and labeled
by the indexl, there is justone frequency at which the as-
sumed dependendd0) on z andt is physically realizable.
Let us show such a solution to be the standard one known

~0.02 —0.01 0.01 0.02 (m) from classical electrodynamics. In fact, by inserting the al-
lowable frequencies, into the complete expression of the

mode, we have
exp{i
time—possess infinite total energy does not seem to give rise
to practical problemgno more than for plane wavessince But the generic solution fofaxially symmetric TM,
such kind of pulses can be truncated in time and neverthelesgoges in a cylindrical metallic waveguide[i21]
seem to maintain their characteristics of superluminal local-
ized beams along a large field dep0].

FIG. 3. Shape along, for fixed t, of the three-dimensional
wave, in the case when its main pe@hown in Fig. 2 is at the
position p=z—vt=0.

. (12

P\
El(p.z;t)=C JO(T

w|ZCcosf
—— ot

N
E; " (p.zit)=C JO(F) exi(Bw)z—wit)]
V. OUR RESULTS FROM THE POINT OF VIEW OF THE
STANDARD THEORY OF WAVEGUIDE PROPAGATION with the dispersion relatio?(w,) = (w,/c)2—(\,/r)?. By
identifying 8(w,)= w, cosblc, as suggested by E¢L2), and
remembering the expression fas; given by Eq.(11), the
ordinary dispersion relationship is obtained. We have, there-

Lu’s theorem is certainly a very useful tool to build up
localized solutions to Maxwell equations: actually, it can be

e L e e e Tl everyfrm i th expansi s 5o
re\?ious resultz i.t may be Worthwhile to outling an alterna-H(r)n to Maxwell equations not different from the usual one.
P > ’ y o The uncommon feature of our soluti@®) is that, given a
tive derivation of them that can sound more familiar. . . . .
particular value off, the phase velocity oéll its terms is

For the sake of simplicity, let us limit ourselves to the . L .
domain of TM (transverse magnejienodes. When a solu- always the same, this being independent of the mode ihdex
Blw))

tion in terms of the longitudinal electric componej is -1
W)

C

sought, one has to deal with tlsgmpleboundary condition Uph= = Zosd"

E,=0. We shall look, moreover, for axially symmetric solu-
tions (i.e., solutions independent of the azimuthal variable

In such a case it is known that the group velocity of the
?)tulseequalsthe phase velocity8], which in our example is
the velocitytout courtof the localized pulse.

With reference to Fig. 4, we can easily see that all the
allowed values ofw, can be calculated by determining the
intersections of the various branches of the dispersion rela-
tion with a straight line, whose slope dependstoanly. By
, (10)  using suitable combinations of terms, corresponding to dif-
ferent indexed, as in our Eq(9), it is possible to describe a
disturbance having a time-varying profile, as already shown
in Figs. 1-3 above. The pulse thus displaces itsgiflly,
with a velocityv equal tov .

It should be stressed that the veloaityor group velocity
vg=v) of the pulses corresponding to E@) is not to be
evaluated by the ordinary formulag=dw/dk (valid for
for E.. one obtains quasimonochromatic signalsThis is at variance with the

z common situation in optical and microwave communica-
d2Q(p) dQ(p) © tions, when the sig_nal is usually an “envelope’_’ superim-
p? > +p +p2k§sin2 0Q(p)=0, ko=—, posed onto a carrier wave whose frequency is generally
dp dp ¢ much higher than the signal bandwidth.that case the stan-
whose only solution, which is finite on the waveguide axis, isdard formula forv yields the correct velocity to deal with
Q(p)=Jo(pkgsinh). By imposing the boundary condition (e.g., when propagation delays are stugli€@ur case, on the

of increasing the mathematical complexitQuantity E, is
then completely equivalent to the scalar variaMle=V 5
used in the previous analysis.

Let us try to find out solutions of the form

wZCosH
—wt

Ez(p,z;t)=CQ(p)ex+

whereQ is a function of the radial coordinageonly, Cis a
normalization constant, aralis, here, the velocity of light in
the medium filling the cylindrical waveguide, supposing it is
nondispersive. The angular frequeneyis for the moment
arbitrary.

By inserting expressioii10) into the Maxwell equation
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FIG. 4. Dispersion curves for
the symmetrical T, modes in a
perfect cyclindrical waveguide,
and location of the frequencies
whose corresponding modes have
equal phase velocity[Actually,

the phase velocityc/cosé of all
" 40=30° the terms in Eq(9) is always the
Vph=2c/N3 i same, being independent of the
mode index. In such a case it is
known that the group velocity of
the pulse equals the phase veloc-
ity: and in our case is the velocity
7 tout courtof the localized pulse
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contrary, is much more reminiscent of a baseband modulatedeering, Unicamp to Amr Shaarawi(American Univ. at
signal, as those studied in ultrasonics: the very concept of @airg), and to Jacobus Swai€CS, Unicampfor continuous
carrier becomes meaningless here, as the elementary “haggientific collaboration. Thanks are also due to o
monic” components have widely different frequencies.  chaves Maia Neto and Daniele Garbelli for their kind help in
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limited extension of the spectral windows corresponding tdlarchesini, Giuseppe Privitera, Anedio Ranfagni, Riccardo
not too large attenuations. Riva, Andrea Salanti, Abraham Steinberg, and Daniel Wis-

nivesky for stimulating discussions. This work was partially
supported by CAPE®Brazil), and by INFN, MURST, CNR
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