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We show that localized~nonevanescent! solutions to Maxwell equations exist, which propagate without
distortion along normal waveguides with superluminal speed.
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I. INTRODUCTION: LOCALIZED SOLUTIONS TO THE
WAVE EQUATIONS

Already in 1915 Bateman@1# showed that Maxwell equa
tions admit~besides of the ordinary solutions, endowed
vacuum with speedc) of wavelet-type solutions, endowed i
vacuum with group velocities 0<v<c. But Bateman’s work
went practically unnoticed. Only few authors, as Barut a
co-workers@2#, followed such a research line; incidentall
Barut and coworkers constructed even a wavelet-type s
tion traveling with superluminal group velocity@3# v.c.

In recent times, however, many authors have discus
the fact that all~homogeneous! wave equations admit solu
tions with 0,v,`: see, e.g., Donnelly and co-workers@4#.
Most of these authors confined themselves to investig
~subluminal or superluminal! localized nondispersive solu-
tions in vacuum: namely, those solutions that were ca
‘‘undistorted progressive waves’’ by Courant and Hilbe
Among localized solutions, the most interesting appeare
be the so-called ‘‘X-shaped’’ waves, which —predicted
exist even by special relativity in its extended version@5#—
had been mathematically constructed by Lu and Green
@6# for acoustic waves, and by Ziolkowskiet al. @7#, and later
Recami@8#, for electromagnetism.

Let us recall that such ‘‘X-shaped’’ localized solutions a
superluminal~i.e., travel withv.c in the vacuum! in the
electromagnetic case; and are ‘‘supersonic’’~i.e., travel with
a speed larger than the sound speed in the medium! in the
acoustic case. The first authors to produce X-shaped w
experimentallywere Lu and Greenleaf@9# for acoustics,
Saari and co-workers@10# for optics, and Mugnai and co
workers and for microwaves.
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II. ABOUT EVANESCENT WAVES

Notwithstanding all that work, still it is not yet well un
derstood what solutions~let us now confine ourselves t
Maxwell equations and to electromagnetic waves! have to
enter into the play in some experiments. Actually, most of
experimental results did not refer to the above-mention
localized, subluminal or superluminal, solutions, which
vacuum are expected to propagate rigidly~or almost rigidly,
when suitably truncated!. They referred, on the contrary, t
measurements of the group velocity ofevanescent waves~cf.,
e.g., Refs.@11,12#!. In fact, tunneling wave packets~tunnel-
ing photons too! and/or evanescent waves had been predic
to be superluminal bybothquantum mechanics@13# and spe-
cial relativity @5#.

For instance, experiments@12# with evanescent wave
traveling down an undersizedwaveguiderevealed that eva-
nescent modes are endowed with superluminal group vel
ties @14#.

A problemarises in connection with experiments with tw
‘‘barriers’’ ~i.e., segments ofundersizedwaveguide! 1 and 2
separated by anormal-sizedwaveguide 3. In fact, it was
found that for suitable frequency bands the wave coming
from barrier 1 goes on having a practically infinite spee
and crosses the intermediate~normal! waveguide 3 in zero
time @15#. Even if this can be theoretically understood b
looking at the relevant transfer function~see the compute
simulations, based on Maxwell equations only, in Re
@14,16,17#!, it is natural to ask ourselves whether solutions
the Maxwell equations can actually exist, that travel w
superluminal speed in a normal waveguide~where one ordi-
narily meets propagating, subluminal modes only!.

Namely, the dispersion relation in undersized guides
v2/c22k252V2, so that the standard formulav.dv/dk
yields a v.c group velocity @17,18#. However, in normal
guides the dispersion relation becomesv2/c22k251V2, so
that the same formula yields valuesv,c only.
©2001 The American Physical Society03-1
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In this paper we are going to show that actually localiz
solutions to Maxwell equations propagating withv.c do
exist even in normal waveguides; but their group velocityv
cannot be given1 by the approximate formulav.dv/dk.
One of the motivations of the present paper is just cont
uting to the clarification of this question, even if our loca
ized superluminal solutions arenot strictly related with the
particular case in Ref.@15#.

III. ABOUT SOME LOCALIZED SOLUTIONS TO
MAXWELL EQUATIONS

Let us start by considering localized solutions to Maxw
equations in vacuum. Atheoremby Lu et al. @19# showed
how to start from a solution holding in theplane (x,y) for
constructing a three-dimensional solution rigidly movi
along thez axis with superluminal velocityv. Namely, let us
assume thatc(r;t), with r[(x,y), is a solution of the two-
dimensional homogeneous wave equation

S ]x
21]y

22
1

c2 ] t
2Dc~r;t !50. ~1!

By applying the transformation r→r sinu; t→t
2(cosu/c)z, the angleu being fixed, with 0,u,p/2, one
gets @19# that c„r sinu; t2(cosu/c)z…5c(x,y,z) is a solu-
tion to the three-dimensional homogeneous wave equa
(“2[]x

21]y
21]z

2):

S“22
1

c2 ] t
2DcS r sinu;t2

cosu

c
zD50. ~2!

The mentioned theorem holds for the vacuum case, a
in general, is not valid when introducing boundary con
tions. However, we discovered that, in the case of a tw
dimensional solutionc valid on a circular domain of the
(x,y) plane such thatc50 for uru5a, the above transfor-
mation leads us to a~three-dimensional! localized solution
rigidly traveling with a superluminal speedv5c/cosu inside
a cylindrical waveguide; even if the waveguide radiusr will
be no longera, but r 5a/sinu.a. We can, therefore, obtain
an undistorted superluminal solution propagating down
lindrical ~metallic! waveguidesfor each ~two-dimensional!
solution valid on a circular domain. Let us recall that, as w
known, any solution to the scalar wave equation correspo
to solutions of the~vectorial! Maxwell equations~cf., e.g.,
Ref. @8# and references therein!.

For simplicity, let us put the originO at the center of the
circular domainC, and choose a two-dimensional solutio
c(r;t) that is axially symmetric, withr5uru, and with the
initial conditions c(r;t50)5f(r) and ]c/]t5j(r) at t
50.

1Let us recall that the group velocity is well defined only when t
pulse has a clear bump in space; but it can be calculated by
approximate, elementary relationv.dv/dk only when some extra
conditions are satisfied~namely, whenv as a function ofk is also
clearly bumped!.
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Notice that, because of the transformations

r⇒r sinu, ~3a!

t⇒t2
cosu

c
z, ~3b!

the more the initialc(r;t) is localized att50, the more the
~three-dimensional! wavec„r sinu; t2(cosu/c)z… will be lo-
calized aroundz5vt. It should be also emphasized that b
cause of transformation~3b! the velocityc goes into the ve-
locity v5c/cosu . c.

Let us start with the choice

f~r!5
d~r!

r
, j~r![0, ~4!

a formal choice that later on will be relaxed. In cylindric
coordinates the wave equation~1! becomes

S 1

r
]rr]r2

1

c2 ] t
2Dc~r;t !50, ~18!

which exhibits the assumed axial symmetry. Looking for fa
torized solutions of the typec(r;t)5R(r)T(t), one gets the
equations ] t

2T52v2T and (r21]r1]r
21v2/c2)R50,

where the ‘‘separation constant’’v is a real parameter
which yield the solutions

T5A cosvt1B sinvt ~5!

R5CJ0S v

c
r D ,

where quantitiesA,B,C are real constants, andJ0 is the or-
dinary zero-order Bessel function@we disregarded the analo
gous solutionY0(vr/c) since it diverges forr50#. Finally,
by imposing the boundary conditionc50 at r5a, one ar-
rives at the base solutions

c~r;t !5J0S ln

a
r D ~An cosvnt1Bn sinvnt !, Fl[

v

c
aG ,

~6!

the roots of the Bessel function being

ln5
vna

c
.

The general solution for our two-dimensional proble
~with our boundary conditions! will, therefore, be the
Fourier-type series

C2D~r;t !5 (
n51

`

J0S ln

a
r D ~An cosvnt1Bn sinvnt !. ~7!

The initial conditions ~4! imply that (AnJ0(lnr/a)
5d(r)/r, and(BnJ0(lnr/a)50, so that allBn must van-
ish, whileAn52@a2J1

2(ln)#21; and eventually one gets

he
3-2
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C2D~r;t !5 (
n51

` S 2

a2J1
2~ln! D J0S ln

a
r D cosvnt, ~8!

wherevn5lnc/a.
Let us explicitly notice that we can go on from such

formal solution to more physical ones, just by considerin
finite numberN of terms. In fact, each partial expansion w
satisfy ~besides the boundary condition! the second initial
condition ] tc50 for t50, while the first initial condition
gets the formf(r)5 f (r), where f (r) will be a ~well! lo-
calized function, but no longer ad-type function. Actually,
the ‘‘localization’’ of f(r) increases with increasingN. We
shall come back to this point below.

IV. LOCALIZED WAVES PROPAGATING
SUPERLUMINALLY DOWN „NORMAL-SIZED …

WAVEGUIDES

We have now to apply transformations~3! to solution~8!,
in order to go on to three-dimensional waves propaga
along a cylindrical ~metallic! waveguide with radiusr
5a sinu. We obtain that Maxwell equations admit in such
case the solutions

C3D~r,z;t !5 (
n51

` S 2

a2J1
2~ln! D J0S ln

a
r sinu D

3cosFln cosu

a S z2
c

cosu
t D G , ~9!

wherevn5lnc/a, which are sums over different propaga
ing modes.

Such solutions propagate, down the waveguide, rigi
with superluminal velocity2 v5c/cosu. Therefore,~noneva-
nescent! solutions to Maxwell equations exist, that are wav
propagating undistorted alongnormal waveguides with su-
perluminal speed~even if in normal-sized waveguides th
dispersion relation for each mode, i.e. for each term of
Fourier-Bessel expansion, is the ordinary ‘‘subluminal’’ on
v2/c22kz

251V2).
It is interesting that our superluminal solutions travel r

idly down the waveguide: this is at variance with what ha
pens for truncated~superluminal! solutions @7–10#, which
travel almost rigidly only along their finite ‘‘depth of field’
and then abruptly decay.

Finally, let us consider a finite number of terms in Eq.~8!,
at t50. We made a few numerical evaluations: let us co
sider the results forN522 ~however, similar results can b
already obtained, e.g., forN510). The first initial condition
of Eq. ~4!, then, is no longer ad function, but results to be
the ~bumped! two-dimensional wave represented in Fig. 1

The three-dimensional wave, Eq.~9!, corresponding to it,
i.e., with the same finite numberN522 of terms, is depicted

2Let us stress that each Eq.~9! represents amultimodal ~but lo-
calized! propagation, as if the geometric dispersion compensa
for the multimodal dispersion.
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in Fig. 2. It is still an exact solution of the wave equation, f
a metallic~normal-sized! waveguide with radiusr 5a/sinu,
propagating rigidly with superluminal group velocityv
5c/cosu; moreover, it is now aphysicalsolution. In Fig. 2
one can see its central portion, while in Fig. 3 it is shown
space profile alongz, for t5const, of this propagating wave
It is actually a component of a train of pulses; such pul
being X shaped@8#, as it will be better shown elsewhere.

Let us recall that such superluminal motions do not imp
causality problems@5,18#, since all Bessel beams, and supe
positions of them, are known not to allow for superlumin
transmission of information@7#. Let us also recall that the
fact that our present solutions—when infinitely extended

d

FIG. 1. Shape of the two-dimensional solution of the wa
equation valid on the circular domainr<a; a50.1 m of the
(x,y) plane, fort50, corresponding to the sum ofN522 terms in
the expansion~8!. It is no longer ad function, but it is still very
well peaked. By choosing it as the initial condition, instead of t
first one of Eqs.~4!, one gets the three-dimensional wave depic
in Figs. 2 and 3. The figure height is normalized so thatuC2D(r
50;t50)u251.

FIG. 2. Three-dimensional~very well localized! wave corre-
sponding to the initial, two-dimensional choice in Fig. 1. It prop
gates rigidly~along the normal-sized circular waveguide with radi
r 5a/sinu) with superluminal speedv5c/cosu, as a component of
a pulse train. Such pulses are X shaped@8#, as it will be better
shown elsewhere. Quantityh is defined ash[@z2(c/cosu)t#. The
central peak height is normalized so thatuC3D(r50;h50)u251.
3-3
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time—possess infinite total energy does not seem to give
to practical problems~no more than for plane waves!, since
such kind of pulses can be truncated in time and neverthe
seem to maintain their characteristics of superluminal loc
ized beams along a large field depth@20#.

V. OUR RESULTS FROM THE POINT OF VIEW OF THE
STANDARD THEORY OF WAVEGUIDE PROPAGATION

Lu’s theorem is certainly a very useful tool to build u
localized solutions to Maxwell equations: actually, it can
used to get a variety of solutions, Eq.~9! being just the
simplest example. Nevertheless, due to the uniqueness o
previous results, it may be worthwhile to outline an altern
tive derivation of them that can sound more familiar.

For the sake of simplicity, let us limit ourselves to th
domain of TM ~transverse magnetic! modes. When a solu
tion in terms of the longitudinal electric componentEz is
sought, one has to deal with thesimpleboundary condition
Ez50. We shall look, moreover, for axially symmetric sol
tions ~i.e., solutions independent of the azimuthal varia
w). ~Such choices could be easily generalized, just at the
of increasing the mathematical complexity.! Quantity Ez is
then completely equivalent to the scalar variableC[C3D
used in the previous analysis.

Let us try to find out solutions of the form

Ez~r,z;t !5CQ~r!expF i S vz cosu

c
2vt D G , ~10!

whereQ is a function of the radial coordinater only, C is a
normalization constant, andc is, here, the velocity of light in
the medium filling the cylindrical waveguide, supposing it
nondispersive. The angular frequencyv is for the moment
arbitrary.

By inserting expression~10! into the Maxwell equation
for Ez , one obtains

r2
d2Q~r!

dr2 1r
dQ~r!

dr
1r2k0

2 sin2 uQ~r!50, k0[
v

c
,

whose only solution, which is finite on the waveguide axis
Q(r)5J0(rk0 sinu). By imposing the boundary conditio

FIG. 3. Shape alongz, for fixed t, of the three-dimensiona
wave, in the case when its main peak~shown in Fig. 2! is at the
positionh[z2vt50.
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Q(r)50 for r5r , one gets that the acceptable angular f
quencies are constrained to be

v l5
cl l

r sinu
, ~11!

wherel l is the l th zero of the equationJ0(x)50.
Therefore, assuming an arbitrary parameteru, we find

that for every mode supported by the waveguide and labe
by the indexl, there is justone frequency at which the as
sumed dependence~10! on z and t is physically realizable.
Let us show such a solution to be the standard one kno
from classical electrodynamics. In fact, by inserting the
lowable frequenciesv l into the complete expression of th
mode, we have

Ez
l ~r,z;t !5C J0S rl l

r DexpF i S v lz cosu

c
2v l t D G . ~12!

But the generic solution for~axially symmetric! TM0l
modes in a cylindrical metallic waveguide is@21#

Ez
TM0l~r,z;t !5C J0S rl l

r Dexp@ i ~b~v l !z2v l t !#

with the dispersion relationb2(v l)5(v l /c)22(l l /r )2. By
identifying b(v l)[v l cosu/c, as suggested by Eq.~12!, and
remembering the expression forv l given by Eq.~11!, the
ordinary dispersion relationship is obtained. We have, the
fore, verified that every term in the expansion~9! is a solu-
tion to Maxwell equations not different from the usual on

The uncommon feature of our solution~9! is that, given a
particular value ofu, the phase velocity ofall its terms is
always the same, this being independent of the mode indl,

vph5Fb~v l !

v l
G21

5
c

cosu
.

In such a case it is known that the group velocity of t
pulseequalsthe phase velocity@8#, which in our example is
the velocitytout courtof the localized pulse.

With reference to Fig. 4, we can easily see that all
allowed values ofv l can be calculated by determining th
intersections of the various branches of the dispersion r
tion with a straight line, whose slope depends onu only. By
using suitable combinations of terms, corresponding to
ferent indexesl, as in our Eq.~9!, it is possible to describe a
disturbance having a time-varying profile, as already sho
in Figs. 1–3 above. The pulse thus displaces itselfrigidly,
with a velocityv equal tovph.

It should be stressed that the velocityv ~or group velocity
vg[v) of the pulses corresponding to Eq.~9! is not to be
evaluated by the ordinary formulavg.dv/dk ~valid for
quasimonochromatic signals!. This is at variance with the
common situation in optical and microwave communic
tions, when the signal is usually an ‘‘envelope’’ superim
posed onto a carrier wave whose frequency is gener
much higher than the signal bandwidth. Inthat case the stan-
dard formula forvg yields the correct velocity to deal with
~e.g., when propagation delays are studied!. Our case, on the
3-4
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FIG. 4. Dispersion curves for
the symmetrical TM0l modes in a
perfect cyclindrical waveguide
and location of the frequencie
whose corresponding modes hav
equal phase velocity.@Actually,
the phase velocityc/cosu of all
the terms in Eq.~9! is always the
same, being independent of th
mode indexl. In such a case it is
known that the group velocity of
the pulse equals the phase velo
ity: and in our case is the velocity
tout courtof the localized pulse#.
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contrary, is much more reminiscent of a baseband modul
signal, as those studied in ultrasonics: the very concept
carrier becomes meaningless here, as the elementary ‘
monic’’ components have widely different frequencies.

Let us finally remark that similar considerations could
extended to all the situations where a waveguide supp
several modes. The tests at microwave frequencies shou
rather easy to perform; by contrast, experiments in the o
cal domain would be probably ruled out, at present, by
limited extension of the spectral windows corresponding
not too large attenuations.
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